LAMINAR BOUNDARY LAYER IN A NON-NEWTONIAN FLUID.
QUALITATIVE DISCUSSION

G. V. Zhizhin UDC 532.526.2:532.135

1. In chemical engineering, flows of such non-Newtonian fluids as different kinds of pulp, suspensions,
polymer mixtures, and solutions are widely used. The flow index n of such fluids can vary between zero and
values of order ten. The equation for a self-modeling laminar boundary layer is often used in calculating such
flows. The solutions of this equation are numerous and diverse, and depend crucially onthe flow index n and
on the boundary conditions. Hence, it is of interest to classify the solutions of the equation of a self-modeling
laminar boundary layer for a non-Newtonian fluid when the flow index is varied from zero to infinity (in prin-
ciple) on the basis of a qualitative study of the differential equations. The first qualitative study of the equation
for a plane laminar boundary layer was carried out in {1] for a Newtonian fluid (n =1}. It was shown that when
the surface of a plate is moved in the direction opposite to an external flow, the self-modeling boundary-layer

" equation either has no solution or has two solutions with different coefficients of friction, depending on the ve-
locity of the surface of the plate. This result was obtained in [2, 3}, independently of {i]. In [4, 5] the equation
for a laminar boundary layer was considered for the flow of a non-Newtonian fluid with a flow index in the re-
gions 2 >n >1and 1 =0 >0.5. The study of [4] was extended in [6] and spatial localization of the boundary
layer for 2 >n > 1 was reported.

In the present paper the self-modeling flow regime in a laminar boundary layer of a non-Newtonian fluid
is studied in the general case, without the restriction to a certain region of positive values of n. The coor-
dinates of the singular points, the characteristic numbers determining the types of these singular points, and
the characteristics of the singular solutions are found as functions of the parameter n. This allows one to
classify the solutions for values of n which have not yet been considered (n = 1/2, n = 2), and to refine, to a
certain degree, the known results. We use the theory of continuous groups, the idea of a two-sheeted phase
plane joined at infinity {4], and the Poincaré transformation. In order to analyze in detail the transition of the
trajectories from one sheet of the phase plane to the other, we consider a sphere, made up of Poincaré hemi-
spheres joined in a special way [7], where the hemispheres uniquely correspond to the two sheets.

2. We consider the equation for a self-modeling laminar boundary layer of a non-Newtonian fluid {8]
F —_ lfr/ln_‘ijw +f”f — O, (2.1)

where the function f(n) is related to the stream function y {x, y) by the expression
. e
V(. 1) = s (n g |75 1 ),

the self-modeling variable is given by

1
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the longitudinal and transverse velocities, and the tangential stress are given hy the equations

ule, 1) = Ul (), v (@ ) = oy (T )™ I ) — G,
Re. = pz"k 703", © = k| dujoy "™ ou/dy.

Equation (2.1) admits a one-parameter group of transformations [4]
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1-2n
P=an, f=a*"], | (2.2)
and under these transformations the three-fold continued infinitesimal operator [9]
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satisfies the equation

XF = 0.
3
We find, using (2.2)
in 3
fOI — an-—2j,, f[)ll — an—Zfll- (2‘3)
From (2.2) and (2.3) we have
2—n n—2 %i~9
P\ £ i "\T
(Ff7=a 7o (G)7 - (2.4)

From the first and second equations of (2.4), and also the first and third, we find the following expressions
for the invariants when n = 0.5

1 LI
g=711" p=f1ET (2.5)

with the help of these invariants (2.1) reduces to a pair of first-order equations

2—n .
d =1 _ 3 .
="l ‘p(lpl_‘"+2nii)51gn /i (2.6)
a = 41
q 2n—1 n; .
8o (p — o sien ) @
and to the two quadratures
— ov sign f (2n — 1) qdg .
! e‘\p'j @) p— L )Pt (2.8)
At
n={qlfF*"as (2.9)

The invariants p and g cannot be used when n =1/2. In this case, from the second and third equations of (2.4),
we obtain the invariant

w=f"If'"? {(2.10)
and with the help of this invariant {2.1) can be reduced to a pair of first-order equations

dw

wH=—1r 2 (fw + 20 sign f); (2.11)

af

o = [V sign £ fw |7V, (2.12)

The second variable of the system (2.11) and (2.12) is f, since according to (2.3), f =f whenn =1/2.

3. The solution of (2.1) for n = 1/2 [with the help of (2.6) and (2.7)] can be represented by trajectories in
a two-sheeted phase plane (p, q) where on one sheet f > 0 and on the other f < 0 [4]. We consider the singular
points of the system (2.6) and (2.7) located within the finite part of the phase plane. Equating the right-hand
sides of (2.6) and (2.7) to zero, we find that on each sheet of the phase plane, for n = 1/2, there exist two sing-
ular points with finite values of the coordinates. On the plane f > 0 the singular points are @, with the coordin-
ates
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1\ 1—2 +1, n>142 (3.1)
po=6(‘2n—1!n'g )2n 1’ q()':: nlpl)ll n' 6= {_17 n<1/2

and B(0, 0}, and on the plane f < 0 the points are a'(=py, q) and 38'(0, 0).

Linearizing (2.6) and (2.7) in the neighborhoods of the points o and o', we obtain

P
i sign f(n — 1} p, |1‘"(p—-(+ po))—s1gnf s (F °) (1— 20) (3.2)
er _ 1 .
“ p— (& p)+2 = signf| 5, [ (- 1)
The characteristic numbers are found from the discriminant of (3.2)
= Py . 172
m=mmmmﬁiﬂ0NP%“J§me]- (3.3)

It follows from (3.3) that the singular points ¢ and o' are saddie points when n <1/2, focal points when 0.6 <
n < 21.4, and nodes when 0.6 >n > 0.5. The focal and nodal points are stable on the plane f < 0 and unstable
on the plane £ > 0. The points « and «' describe the solutions

Ul 1—2n

1
— 9—n Yoom
2120 — 1) 52 22 A

Ja,or = =+ {

for n = 2. For n =2 they describe the solutions

Faq = @A),

The plus sign in these solutions corresponds to the point o, and the minus sign to o'.

The singular points g and ' are complicated, and, as follows from constructions along the zero isoclines,
they are of the saddle-point—nodal-point type. The singular points ¢ and o' (n = 1/2) and g and 3' (n > 1/2)
are equilibrium positions of the system, and at these points the derivatives p' =¢' =0. For n < 1/2 the tra-
jectories on the plane f > 0 converge toward the point g with the derivative f' < 0 (g < 0), and diverge from
the point ' on the plane f < 0, also with the derivative f' < 0. Since q =0 at the points 8 and B', we obtain
that £ = 0 at these points and the derivatives p' and q' are indeterminant (0/0). This means that the points
B, B' cannot be positions of equilibrium when n < 1/2. The point representing the state of the system does
not approach g asymptotically, but passes through g, ' in going from one sheet of the phase plane (f > 0) to
the other (f < 0).

We consider which of the solutions of the system (2.6) and (2.7) are singular. We divide (2.8) by {2.7)
(n=1/2)

3
1-n
dp plpV ™" +o—qap
r7a i T = (e 9)- (3.4)
_P51gnf+2n_.1q

The singular solutions are those curves in the (p, q) plane which are solutions of (3.4) and along which the de-
rivative 8Ry/8p = « [10]. Differentiating Ry, we obtain

2n 1 2n—1
ap ! 2 pn

\¥ 5

3q _ 1-n 2 n4+1 . 3q —n |,
ﬂ [Zn 1+2 el Hq+ psx,,nf]+p[ ]Slgnf (3.5)

— psign f)‘

It follows from (3.4) and (3.5) that the singular solution is the straight line p =0, and only for 2 >n > 1.

In the case n =1/2 the solution of (2.1) can be represented by the trajectories of the system (2.11) and
(2.12) in the two-sheeted (w, f) phase plane. The two sheets correspond to positive and negative values of the
derivative f'. It follows from (2.11) and (2.12) that in the finite part of the (w, f) phase plane (for £ >0 and
for ' < 0) there are no singular points. There are also no singular solutions.
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4. We consider the singular points of the system of equations (2.6) and (2.7) which lie at infinity., In order
to do this, we perform a first Poincaré transformation [7]

g = 1z, p = uz. (4.1)
In terms of the variables u and z, the Egs. (2.8) and (2.7) take the form

d ,o2n _ .
B 7120 (g = sign f— sign flup P signz |2l (4.2
e +1
'Zid% m— (uoz — Zln—:-—i sign f). 4.3)

The point z =0, u; =0 is a singular point of the system (4.2) and (4.3). It corresponds to two points B and B'
of the Poincaré sphere. These points are the intersections of the equator z =0 and the axis Q, which goes out-
ward from the center of the sphere parallel to the g axis (see [7]). In the neighborhood of the singular point

n

n—

=n+

) S
dz z*

s

and therefore the characteristic numbers are A; =n—~2 and A, =n + 1. This singular point is a node for n > 2
and a saddle point for n < 2 and the equator is a solution of the system (4.2) and (4.3). When n = 2 the system
(4.2) and (4.8) does not have singular points on the equator, and the equator is not a solution of these equations.

We study the intersection points of the equator with the P axis, which goes out from the center of the
sphere parallel to the p axis (points D, D'). We apply a second Poincaré transformation

q= 1;075, p= 1/z, (4.4)

In terms of the variables v, and z, Egs. (2.6) and (2.7) can be written as

d = 2—n 4., o
gvﬁ =|fP" zl(z + 5= vbsign f + sign zsign fo, | 2| ); (4.5)
o ‘
d: rrl 3 :
= = (Slgn zzp"+ ﬂ:"ivo) sign 1. (4.6)

The point v, =0, z =0 is a singular point of (4.5) and (4.6) for n > 1. In the neighborhood of this point,
neglecting (for n > 1) in the numerator of the right-hand side of (4.5) terms higher than second order, and in
the right-hand side of (4.6) terms higher than first order, we obtain

2—n
dv, . Az+§;ﬁv351gnf
-d7 == 3 . (4.7)
1% sign f

After performing the substitution » =zvj® in (4.7), we find that it has the integral

2(2—n)
|U3~23ign le:c]zl 3 (4.8)

[c is a constant of integration (¢ > 0)].

It can be shown that (4.8) has two solutions in each of the regions f >0 and f < 0. We consider the case
f >0. Then

|v§——2|zl|, z>0,

2 com o | e 10?92 ) =
|v2 — 2signfz| = |ve 22| lvﬁ—l-ZlZIl’ 2<0.

The first expression inside the curly brackets has two possible values:

v:—2|z|, vg>2z

2 __ ==
] = A0 A0
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And thus, when z < 0

2(3—n) 12
v0=i(6|2| ¥ —ZIZl) . (4.9)

When z > 0 there are two possible solutions:
2(2~-n) 1/2 .
vo=i(cxzi : +2lz|) for vi>>2z (4.10)

2(2~n)

1/2
v0=i(2|z'|—c[z| : ) for Vo< 2. (4.11)

However, the solution (4.11) does not occur in the real part of the complex plane, since when n > 1 the expres-
sion under the radical in (4.11) is negative. Hence there exist two solutions in the region £ > 0: (4.9) for z < 0
and (4.10) for z >0, and v} > 2z when z > 0. In a similar way it can be shown that in the region f < 0 there are
two solutions: (4.10) for z < 0 and (4.9) for z >0, and |z ] < V%/Z when z < 0.% Graphs of the functions (4.9)
and (4.10) in the regions £ >0 and f < 0 are shown in Fig. 1 for z > 0 and z < 0. The distribution of trajec-
tories in the neighborhood of the point vy =0, z =0 for 1/2 < n < 1 has the same form and can be determined
by constructing the zero isoclines.

We consider the infinitely distant points of the (w, f) plane. At these points f = i+ and so there are no
transitions of trajectories from one sheet of the phase plane to the other (as follows from Sec. 3, there are no
singular points in the finite portion of the (w, f) phase plane).

We introduce a first Poincaré transformation w = u,;/z,, £ =1/z;. Then the system (2.11) and (2.12) re~-
duces to the form

d . ’ . ‘ ) . . < .
7;-]-1 = |7 \1(2 ’3‘ (slgn f 7 [N !1/2 signu, {u, d Fup 4 uy 13/2 sign z, | 2, [1{2 sign f’)§ (4.12)
1
sy —z2l]‘”{1/25i nfliz u—lll/z .
- A g LR A (4.13)

It follows from (4.12) and (4.13) that the point z; =0, u; =0 is singular. Dividing (4.12) by (4.13) and neglecting
in the numerator of the right-hand side the ratios of terms of higher order than 3/2, we find the following equa-
tion in the neighborhood of the point z; =0, u; =0

i R peE o,
dz; A sign f', (4.14)
which has the integral
1 1 : ’ 5 A2
Uy = (-—S—SIgn]‘ 12,1 /2~[—K) {4.15)

(K is a constant of integration). From (4.14) and (4.15) it can be shown that in the neighborhood of the singular
point z; =0, u; = 0, the distribution of frajectories forms a node.

*We note that the authors of [6] apparently did not recognize that the left-hand side of (4.8) is an absolute value,
and therefore of the two solutions (4.9) and (4.10), they considered only (4.10).
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We introduce a second Poincaré transformation w = 1/z4, f = v,/z,, Then (2.11) and (2.12) transform to
Wy e A (e : o
T = |1 (sign 720 7 0]+ 205, [ sign /) (4.16)

dz .
o = oy + 2 [ sign ). (4.17)

The point 2; =0, v; =0 is a singular point of the system (4.16) and (4.17). Keeping only the lowest-order terms
on the right-hand sides of (4.16) and (4.17), we obtain, in the neighborhood of the point z; =0, v, = 0:

2y

P19l
dz1 z

From (4.18) the characteristic numbers at the singular point are A, =2, A, =1 and hence the singular point
z;=0,v;=0isa node.

5. The discussion of the invariants of (2.1) and its singular points in Secs. 2 through 4 has shown that
there are six intervals of the index n with qualitatively different phase diagrams: n >2,n=2,2 >n > 1,
1=n>1/2,n=1/2,n<1/2. A setof trajectories is constructed in the phase plane by considering the be-
havior of the trajectories in the neighborhoods of the singular points and the intersections of the trajectories
with the zero isoclines. The question of a transition of the trajectories from one sheet of the phase plane to
the other through a singular point is resolved by starting from the continuity of the function f and its derivatives
across the transition, and the correspondence between the solutions and possible flows in the boundary layer.
Equation (2.1) is invariant with respect to the reflection (f, 5) — (—f, ~n). Therefore each trajectory in the set
of trajectories obtained for a given n can be correlated with the tr'ajectory related to it by a reflection. Hence
the set of trajectories for each value of n can be divided into two sets whose trajectories are related by this
transformation. '

Mappings of both sheets of the phase planes {for the above intervals in n) into circles (obtained by means
of a previous mapping of the planes onto the lower Poincaré hemisphere) are shown in Fig. 2, where the ori~
gins of the coordinate axes p, q and w, f are taken at the centers of the circles (a through d, £, and e), respec-
tively). The axes p and w are oriented upward, and g and f point to the right. The shaded circles denote the
singular points through which the trajectories pass from the circle £ > 0 (f < 0) to the circle £ < 0 (£ > 0), while
the open circles denote the singular points corresponding to equilibrium positions. The trajectories belonging
to the (second) set, obtained after the transformation (f, n) — (~£, —1) are denotedby putting primes on the let-
ters, which correspond to a definite trajectory type. For greater clarity in the passing of the trajectories
through the transition points, parts of the {rajectories are crossed by primes, with an increase in the number
of primes corresponding to the sequence of passages of the trajectories along the 5 coordinate. For all n
except n = 2 the outer circumference of the circle is a trajectory of the system. For n =2 each point of the
circumference is a transition point {(but not a singular point). Using the system of trajectories, the expres-
sions for the invariants (2.5) and (2.10), and the defining equation (2.1), one can qualitatively construct for each
value of n a system of integral curves. f(n).

Figure 3 shows the integral curves for different types of trajectories belonging to the first set only, since
with the help of a reflection one can obtain the integral curves of the second set with no difficulty. It is sig-
nificant that in spite of the different paths of the trajectories for different values of n, the corresponding in-
tegral curves are qualitatively close to one another. Hence they can be denoted by a single symbol. For all n
(except n =1/2) there exists the set of integral curves (and trajectories) b, 8, ¢, Sy, a, r, which will be called
the fundamental set (Figs. 2 and 3). This fundamental set, as shown in [1] for the boundary layer of a New-
tonian fluid, corresponds to two different solutions with different friction coefficients in the flow of a fluid along
a plate with a negative velocity of the surface of the plate. Hence for the flow of a non-Newtonian fluid with
any n = 1/ 2, and in particular for the flow of a non-Newtonian fluid (n = 1/2) along a plate with a surface moving
in the direction opposite to the external flow, there exist two self-modeling solutions with different coeificients
of friction. The critical velocity of the surface of the plate, at which the steady self-modeling solution ceases
to exist, depends weakly on the flow index, increasing in absolute value with increasing flow index [5]. ¥ n >
1/2, then in addition to the fundamental set of solutions, there exist the solutions «, 8, S; (Figs. 2a-d; 3b) and
for 1 < n < 2, there are c;, ¢y, formed by joining the solutions ¢, r, r' (Figs. 2¢; 3¢), and their reflections.

For n < 1/2 there exist the solutions Iy, 15, I3, L43, 115, @ and their reflections (Figs. 2f, 3d), in addition to the
fundamental set of solutions. It should be noted that the solutions « and «', denoted by the same letter as the
equilibrium position, differ depending on n. In particular, fagn) for 1/2 < n < 2 has a vertical asymptote,
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while for n = 2 the solutions monotonically increase with decreasing 5 (curves 1-4 of Fig. 3b for n > 2, n =2,
1/2<n<2,n<1/2. This means that the solutions b, 8, ¢, 8;, which approach o with decreasing 7, have
different asymptotic behaviors of their left branches for 1/2 < n < 2 and n = 2. As an example, in Fig. 3b the
curves 1'-3' show the solution S; forn > 2, n'=2, 1/2 < n < 2. The simplest set of trajectories occurs in the
degenerate case when n =1/2. Then the invariants p, ¢ become irreducible (Fig. 2e¢). The corresponding in-
tegral curves are shown in Fig. 3e.

The integral curves of Fig. 3, depending on their shape and on the position of the origin of the coordinate
7 (in the upper or lower half-plane, on the increasing or decreasing branch, and so on) describe different flows
in the boundary layer: a stationary plate (S) with injection (c;, ¢, c,) and exhaust (b, 1y, Iy, I4g), @ plate moving
in the same direction as the external flow (c; Sy, @, €y, Cys Lyps Iy Ligs @, @) with exhaust (b, S, ¢, Sy, @, ¢y, Cy,
@y Gy Lygs U 1ys Uyss Lg) and injection (yy, 1y, Uyss a9y @ys €5 Cys €0 gy Sy @), @ plate moving in the opposite direc-
tion to the external flow (¢, ¢y, cy, 1) with exhaust (¢, ¢y, €95 S, b, Iy, Iy, Iyg) and injection (c, ¢y, ¢y, Iyy), @
plate moving in a medium at rest (a for 1/2 < n = 2, Sy, I;y), a plate moving with the same velocity as the ex-
ternal flow with injection and exhaust (r), a mixing layer of flows with zero (S, @4, @) and finite association
(a, ay, @), 2 mixing layer where the flows are in opposite directions (c; when the upper joining points of the so-
lutions r' and ¢ go to infinity).

The solutions c¢; and ¢, are possible for 1 < n < 2 and describe the phenomenon of localization of the bound-
ary layer, which was observed in [6] for the flow of a dilating fluid in this interval of n.

It was asserted in [11] that the boundary layer is also localized for n > 2. However, as follows from Sec.
3, the solutions r and r' are not singular in this case. Therefore solution ¢ cannot be joined with the solutions
r and r* for finite values of the variable n and localization of the boundary layer cannot occur for n > 2.*

It is important to note that for an equation of the type considered here (involving the absolute value of a
function which can change sign) it is necessary in constructing the phase diagrams to consider two Poincaré
spheres, corresponding to the two sheets of the phase plane. The transition from one sheet to the other corre-
sponds to the transition of the trajectories from one Poincaré sphere to the other through the transitional
singular points. It is of interest to introduce a manifold which would be unique for positive and negative values
of the function f. We consider flows with n greater than one-half. In this case the transitional singular points
lie on the equator of the Poincaré sphere. If we join two Poincaré hemispheres along the equator (let the upper
hemisphere correspond to £ < 0, and the lower one to f > 0), then when f changes sign the frajectories go from
one hemisphere to the other and belong to a single manifold.

*The incorrectiness of the assertion in [11] on the localization of the boundary layer for n > 2 results from the
fact that the authors of [11] considered the behavior of the solutions in the limit as " goes to zero. However
(2.1) was not used, but an equation obtained by transforming it with a transformation which is incorrect for n >2
and f" — 0.
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£ >0
Fig. 4

The analysis shows that for the set of necessary conditions of the transition indicated in the beginning of

Sec. 5, it is sufficient to impose a reflection on the upper hemisphere (up to its joining with the lower hemi-
sphere) with respect to @ plane passing through the points B and B', and perpendicular to the equator. In this
manifold the double-valued nature of the correspondence between the points of the Poincaré sphere and the
mapped planes does not appear, and the set of solutions completely reduces to the solutions represented in Fig.
2. The manifolds for flow indices 1/2 < n <1 and n > 2 are shown in Figs. 4 and 5.

When n < 1/2 the transition from one sheet of the phase plane to the other goes through the origin of the

coordinate system. In order to have a smooth transition of the trajectories on the sphere through this point it
is necessary to nest the lower Poincaré hemisphere (corresponding to f > 0) inside the lower Poincaré hemi-
sphere corresponding to £ < 0, after rotating it by 180°.

N o=

10.
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